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Abstract  

Background: Perfluoroalkyl substances (PFASs) are synthetic compounds that are widely used 

in industry and are often detectable in humans. In pregnant rats and their pups, PFASs can 

interfere with thyroid hormone homeostasis. In humans, maternal thyroid hormones supply the 

fetus throughout pregnancy, and thyroid hormones play a critical role in fetal growth and 

neurodevelopment. 

Objectives: To investigate the association between maternal PFAS exposure and thyroid 

hormone status in pregnant women and neonates. 

Methods: In a study of environmental exposure and health in Taiwan, we measured serum 

concentrations of 9 PFASs and 4 thyroid hormones for 285 pregnant women in their third 

trimester; and also measured cord serum thyroid hormones for 116 neonates. Associations 

between maternal PFASs and maternal and cord thyroid hormones were examined in multiple 

linear regression models. 

Results: Perfluorohexanesulfonic acid concentrations were positively associated with maternal 

thyroid stimulating hormone (TSH) levels. Pregnant women with higher levels of 

perfluorononanoic acid (PFNA), perfluoroundecanoic acid (PFUnDA) and perfluorododecanoic 

acid (PFDoDA) had lower free thyroxine (T4) and total T4 levels. For example, we estimated 

that maternal free T4 levels decreased 0.019 ng/dL (-0.028, -0.009) with each ng/mL increase in 

maternal PFNA. Finally, maternal PFNA, PFUnDA, and PFDoDA levels were associated with 

lower cord total triiodothyronine (T3) and total T4 levels, and maternal perfluorodecanoic acid 

(PFDeA) was associated with lower cord total T3. 

Conclusions: Our results suggest that exposure to some PFASs during pregnancy may interfere 

with thyroid hormone homeostasis in pregnant women and fetuses. 
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Introduction  

Perfluoroalkyl substances (PFASs) are synthetic compounds that are heat resistant and 

chemically stable. They are widely used in commercial products, such as furniture, carpets, fire-

fighting foams, food packing materials, and cooking utensils (Lau et al. 2007). 

Several different pathways have been suggested by which humans are exposed to PFASs, 

including diet, drinking water, migration from packaged foods, indoor dust and outdoor air 

(Fromme et al. 2009). Some PFASs can accumulate in the environment and are often detectable 

in the tissues of humans (Houde et al. 2006). Long elimination half-lives have been observed for 

some PFASs in humans; for example, means of 4.8 years for perfluorooctane sulfonate (PFOS) 

and 3.5 years for perfluorooctanoic acid (PFOA) (Olsen et al. 2007). While PFOS and PFOA 

have been phased out by manufacturers, perfluorononanoic acid (PFNA) concentrations have 

increased in the environment and in the tissues of humans (Andersen et al. 2008; Calafat et al. 

2007). The persistence and bioaccumulative properties of PFASs have raised concerns about 

exposure to PFASs and human health effects. 

Experimental studies have found that PFOS treatment reduces total serum concentrations of 

thyroxine (T4) and triiodothyronine (T3) in pregnant rats (Chang et al. 2008; Luebker et al. 2005; 

Thibodeaux et al. 2003) and total T4 levels were reduced in PFOS treated rat pups (Lau et al. 

2003; Luebker et al. 2005). In humans, Kim et al.’s recruited pregnant women from hospitals in 

three large cities in South Korea and analyzed 44 blood samples collected in the 3rd trimester and 

from the cord at delivery. Their results showed inverse correlations between maternal PFOS and 

cord T3 levels, inverse correlations between maternal perfluorotridecanoic acid (PFTrDA) and 

cord T4 and T3, and positive correlations between maternal PFOA and cord thyroid stimulating 
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hormone  (TSH) levels  after adjustment  (Kim  et  al. 2011). However, a  case-control  study of  

Canadian pregnant women reported that serum concentrations of PFOA, PFOS and 

perfluorohexanesulfonic acid (PFHxS) were not associated with hypothyroxinemia (Chan et al. 

2011). 

Thyroid hormones are essential for normal fetal growth and development. The fetus is 

completely reliant on maternal T4 during the first trimester; thereafter, the fetal thyroid gland 

begins to function (Contempre et al. 1993; Vulsma et al. 1989). At birth, approximately 30% of 

T4 in cord blood originates from the mother (Fisher 1997). Therefore, both mothers and fetuses 

supply thyroid hormones during pregnancy. Concerns thus arise about the potential effect of in 

utero PFAS exposure on thyroid hormone homeostasis in pregnant women and their fetuses. 

Our study was designed to examine possible associations between maternal serum concentrations 

of PFASs during pregnancy and 1) thyroid hormones in pregnant women, and 2) thyroid 

hormones in neonates. 

Materials  and  Methods  

Subjects and data collection  

Our subjects were from a longitudinal birth cohort study of environmental exposures and health 

among pregnant women and children in central Taiwan, part of the nationwide Taiwan Maternal 

and Infant Cohort Study. From December 2000 to November 2001, we invited all pregnant 

women visiting the local medical centers to participate in the study. At their first visit in the 

obstetric clinic, we recruited 430 women and interviewed them about demographic factors, 

reproductive and medical histories, and diet during pregnancy. We collected blood samples 

during their third trimester and umbilical cord blood samples at delivery. Among 430 recruited 
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women, 135 had no measurement  of  either PFASs  or thyroid hormones  and 10 reported thyroid  

disease; they were excluded from the study. Thus, we had 285 subjects with data on both PFAS 

concentrations and thyroid hormones. 

The Human Ethical Committee of the National Health Research Institutes in Taiwan approved 

the study. Each of the participants signed informed consent documents at the time of enrollment. 

Exposure assessment  

We sent maternal serum samples to National Taiwan University for measurement of PFASs. 

Altogether 9 PFASs were analyzed: PFHxS, PFOA, PFOS, PFNA, perfluorodecanoic acid 

(PFDeA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), 

perfluoroheptanoic acid (PFHpA), and perfluorohexanoic acid (PFHxA). The analytical method 

has been described elsewhere in detail (Lien et al. 2011; Lin et al. 2012). In this study, we 

modified the sample preparation procedure slightly. One hundred µL of plasma sample was 

vortexed with 100 µL of 1% formic acid (pH = 2.8) for 30 seconds. Then 250 µL of methanol 

and 50 µL of 0.01 ng/mL internal standard solution (13C8-PFOA) were added to each sample 

before the second vortex. The mixture was sonicated for 20 minutes and then centrifuged at 

14,000 rpm for 20 minutes. The supernatant was collected and then was filtered through a 0.22-

µm PVDF syringe filter into a 2.0 mL auto-sampler vial. 

Nine calibration standard solutions were prepared in 100 µL of bovine plasma and were prepared 

as described. The concentrations of specific analytes ranged from 0.25-125 ng/mL, with a fixed 

amount of internal standard (5 ng/mL). 

The separation and detection were performed on an Agilent-1200 high performance liquid 

chromatography system (Agilent, Palo Alto, CA, USA) coupled with a triple-quadrupole mass 
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spectrometer (Sciex API 4000, Applied Biosystems, Foster City, CA, USA). The  limits  of  

quantitation (LOQs), defined as a signal-to-noise ratio of ten, ranged from 0.07 to 0.45 ng/mL 

for the nine PFASs. The intra-assay coefficients of variation (CVs) for PFAS concentrations 

ranged from 0.83 to 7.94% and the inter-assay CVs were 1.57 - 24.7%. 

Assessment of thyroid hormones   

Serum concentrations of maternal and cord thyroid hormones, including free T4, total T4, total 

T3, and TSH were measured at the central laboratory of Kaohsiung Medical University Hospital 

using radio-immunoassays. Commercial kits for total T3, total T4, and TSH were purchased 

from Daiichi Radioisotope Laboratory (Tokyo, Japan). Free T4 kits were from CIS Bio 

International US Inc. (Bedford, MA, USA). The intra-assay CVs of these measures were all 

below 5% and the inter-assay CVs were all below 10%. 

Statistical analysis  

The distributions of maternal PFAS concentrations were skewed; therefore, we used medians and 

25th, 75th, and 95th percentiles to describe their distributions and a Spearman correlation 

coefficient (r) to describe the pair-wise relationships among maternal PFASs. Maternal and cord 

T4 concentrations were normally distributed. Maternal and cord total T3 became normally 

distributed after removal of a single unusually high value from each distribution. Maternal and 

cord free T4 and TSH were skewed. Thus we used means (standard deviation [SD]) and medians 

(inter-quartile range [IQR]) to describe their distributions. We compared means between two 

groups with Student’s t-test and compared frequencies between groups with a chi-square test. For 

PFAS values below the LOQ, we imputed the corresponding expected value (E) conditional on 
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values  being below  LOQ  based on an assumed log-normal  distribution of  PFASs  (Richardson 

and Ciampi 2003) and used these when fitting models. 

In preliminary analyses (not shown), we used a generalized additive model with a cubic 

smoothing spline to evaluate the possibility of a non-monotonic relationship between each 

maternal PFAS (untransformed) and each outcome; a significant spline term for a given maternal 

PFAS would indicate a non-linear relationship with the outcome. We did not find any significant 

spline terms (p > 0.05) in any model, therefore, we fit a linear regression model to each maternal 

thyroid hormone in relation to each maternal PFAS concentration and for each cord thyroid 

hormone and each maternal PFAS. We made no general adjustment for multiple comparisons 

(Rothman 1990). 

In the linear regression models, thyroid hormones were the dependent variables and maternal 

PFASs were continuous independent variables. Thus the linear coefficient (β) corresponds to the 

unit change in the thyroid hormone with a one-unit (ng/mL) increase in maternal PFAS. We 

present results with and without natural log transformation (ln-transformation) of the thyroid 

hormones. Additionally, we express the estimated effect size as the ratio (%) of β to the mean 

thyroid hormone concentration, which can be interpreted as an index of association size. 

Covariates considered were maternal age, maternal education, previous live births, family 

income, maternal pre-pregnancy body mass index (BMI, kg/m2), and maternal fish consumption 

during pregnancy. We included maternal age at enrollment (continuous) a priori in the models, 

and then we used univariate regression to identify covariates that predicted both maternal PFAS 

concentrations and maternal thyroid hormone concentrations with p < 0.1. Factors included in 

the final model based on this criterion were maternal education (< high school, high school, part 
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or full  college, and >  college) and previous  live  births  (0 and ≥  1). When we  fit  models  between 

maternal PFASs and cord thyroid hormones, we also adjusted for the neonate’s gender and type 

of delivery (normal vaginal, vacuum and caesarean section). Maternal fish consumption might be 

associated with both maternal PFASs and maternal thyroid hormones; however, adjustment for it 

may result in over-adjustment because fish are also a source of PFASs. Fish are also a source of 

other contaminants, such as polychlorinated biphenyls (PCBs), and iodine, both of which can 

affect thyroid hormone levels. Therefore, we performed sensitivity analyses by comparing results 

with and without adjustment for maternal fish consumption during pregnancy. 

We searched for influential observations in each of the linear regression models (Belsley et al. 

1980). There were few influential observations (N < 10) in any model and no major differences 

were found in the results after they were excluded. Therefore, we only present the results with all 

data included. SAS (Version 9.2, Cary, NC) was used to perform all statistical analysis. We 

considered p values < 0.05 to indicate statistical significance. 

Results  

Participant characteristics  

The characteristics of the 285 pregnant women are shown in Table 1. They averaged 29 years 

old, had an average pre-pregnancy BMI of 20.6 kg/m2, and generally did not smoke or consume 

alcohol during pregnancy. Almost all had high school education or more, and over half of the 

women were primiparous. The 285 subjects, compared with the 135 who had no data on PFAS 

and thyroid hormones, were not significantly different in age, pre-pregnancy BMI, fish 

consumption, previous live births or education. 
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Among the  singleton infants  delivered by  these  women, 116 had at  least  one  cord serum  thyroid 

hormone measurement (Table 1). Compared with those whose cord measurements were not 

available (N = 314), the distribution by gender and by type of delivery was not significantly 

different, nor were mean gestational weeks at birth, birth weight or maternal thyroid hormone 

levels (N = 169, ln-transformed). However, neonates with cord measurements had significantly 

higher mean maternal concentrations of PFNA (2.5 vs 1.8 ng/ml), PFUnDA (8.7 vs 5.1 ng/ml) 

and PFDoDA (0.44 vs 0.35 ng/ml) (ln-transformed). 

Maternal PFAS and maternal and cord thyroid hormone levels  

Among the nine maternal PFASs, PFHxA and PFHpA concentrations were detected in less than 

20% of samples and thus were not considered further. The other seven substances were detected 

in more than 70% of the serum samples (Table 2). PFOS had the highest median concentration, 

followed by PFUnDA, PFOA, PFNA, PFHxS, PFDeA, and PFDoDA. Concentrations of PFNA, 

PFUnDA, and PFDoDA were highly correlated (r ≥ 0.87, all p < 0.001). PFDeA concentrations 

were moderately correlated with concentrations of PFNA (r = 0.62, p < 0.001), PFUnDA (r = 

0.57, p < 0.001), and PFDoDA (r = 0.58, p < 0.001) (see Supplemental Material, Table S1). The 

serum concentrations of thyroid hormones in the pregnant women and neonates are shown in 

Table 3. Maternal and cord total T4 and total T3 were normally distributed. The means and 

medians of maternal free T4, as well as cord free T4, were quite close. The distributions of both 

free T4 and TSH were skewed, though. As expected, cord TSH level was high, which is 

attributed to labor and delivery. 
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Association between maternal PFASs and maternal thyroid hormones  

The models showed similar results before and after adjustment for covariates, therefore, the 

coefficients (βs) and 95% confidence intervals (CIs) are shown only after adjustment in Table 4. 

Most maternal PFASs were inversely associated with maternal free T4, and the associations with 

maternal PFNA, PFUnDA, and PFDoDA were statistically significant. According to model 

estimates, maternal free T4 levels decreased 0.019 ng/dL (95% CI: -0.028, -0.009) with each 

ng/mL increase in maternal PFNA, 0.004 ng/dL (95% CI: -0.007, -0.002) with maternal 

PFUnDA, and 0.132 ng/dL (95% CI: -0.204, -0.059) with maternal PFDoDA. The index of 

association size for free T4 per unit change in maternal PFASs is given by β/mean free T4 × 100; 

thus, -3.2% for maternal PFNA, -0.7% for PFNA, and -22% for PFUnDA, respectively. 

Maternal PFNA, PFUnDA, and PFDoDA were also significantly inversely associated with total 

T4. With each ng/mL increase in maternal PFNA, PFUnDA, and PFDoDA, there was an 

estimated decrease of 0.189 (95% CI: -0.333, -0.046), 0.062 (95% CI: -0.097, -0.026), and 1.742 

(95% CI: -2.785, -0.700) µg/dL in maternal total T4, respectively. The index of association size 

was -1.7%, -0.5%, and -15.4% respectively. 

We found a significant positive association between maternal PFDeA and maternal total T3, 

however, the magnitude was small (β = 0.002, 95% CI: 0.000, 0.003). Associations between 

other maternal PFASs and maternal total T3 were very small and not statistically significant. 

Maternal PFHxS was positively associated with maternal TSH levels with statistical significance. 

There was an estimated increase of 0.105 (95% CI: 0.002, 0.207) µIU/ml in maternal TSH levels 

with each ng/mL increase in maternal PFHxS. The index of association size was a 5.2% increase 

in maternal TSH per ng/mL increase in maternal PFHxS. 
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Results  for ln-transformed maternal  thyroid hormones  are  presented in the  Supplemental  

Material, Table S2. There were no differences in the direction or significance of the observed 

associations between the analyses using transformed or untransformed thyroid hormone values. 

In the sensitivity analysis, adjustment for maternal fish consumption did not change the results 

for either maternal or cord thyroid hormones (data not shown). 

Association between maternal PFASs and cord thyroid hormones   

We also investigated the associations between maternal PFASs and cord thyroid hormones 

(Table 5). Maternal PFNA, PFUnDA and PFDoDA levels were also inversely associated with 

cord total T4. The cord total T4 level decreased 0.213 (95% CI: -0.384, -0.042) ng/dL with each 

ng/mL increase in maternal PFNA, 0.052 (95% CI: -0.095, -0.010) ng/dL with each ng/mL 

increase in PFUnDA, and 1.92 (95% CI: -3.345, -0.495) ng/dL with each ng/mL increase in 

PFDoDA. The index of association size was -2.5%, -0.6 %, and -23% with each ng/mL increase 

in maternal PFNA, PFDoDA and PFUnDA, respectively. 

Additionally, these three substances were also inversely associated with cord total T3 levels. 

With each ng/mL increase in maternal PFNA, PFUnDA, and PFDoDA, there was a decrease of 

0.002 (95% CI: -0.004, -0.001), 0.001 (95% CI: -0.001, -0.0002), 0.022 (95% CI: -0.035, -0.009) 

µg/dL in cord total T3, respectively. The index of association size was -3.3%, -1.7 %, and -0.3% 

respectively. Higher maternal PFDeA concentrations were also significantly associated with 

lower cord total T3. One ng/ml increase in PFDeA was associated with a 0.017 (95% CI: -0.028, 

-0.005) decrease in cord total T3. The index of association size was 24%. 

Associations between maternal PFNA and cord total T4, and maternal PFUnDA and cord total 

T4 were still negative but lost statistical significance after further adjustment for fish 
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consumption (data not shown), while other associations were similar to those without adjustment 

for fish consumption. Results for ln-transformed cord thyroid hormones were similar (see 

Supplemental Material, Table S3). 

Discussion  

In these data, maternal serum concentrations of three PFASs - PFNA, PFUnDA and PFDoDA -

were strongly correlated. All three were significantly inversely associated with maternal free T4 

and total T4, and with cord total T3 and total T4. Additionally, we found a statistically 

significant positive association between maternal serum concentrations of PFHxS and maternal 

TSH levels, and a significant positive association of maternal PFDeA with maternal total T3, but 

inverse association between maternal PFDeA and cord total T3 levels. 

The inverse associations we observed between maternal PFNA, PFUnDA and PFDoDA and 

maternal free T4 and total T4, and cord total T3 and total T4 have not been reported before. A 

study done in South Korea, where pregnant women were recruited from three hospitals in large 

cities and their blood samples (N = 44) were collected in the 3rd trimester and from the cord at 

delivery, reported inverse associations between maternal PFOS and cord T3 levels, and between 

maternal PFTrDA and cord T4 and T3 (Kim et al. 2011). However, we did not find the 

significant adverse association between maternal PFOS and cord T3. As we did not measure 

maternal PFTrDA, we could not replicate that finding. In non-pregnant women, some PFASs 

were found to be associated with elevated T4 (Dallaire et al. 2009; Knox et al. 2011). 

We found a significant positive association between maternal PFDeA and maternal total T3, but 

it was small (β = 0.002). The association between maternal PFDeA and cord total T3 was 

negative, which is consistent with the inverse associations between maternal PFNA, PFUnDA, 
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and PFDoDA  and thyroid hormones  in both maternal  and cord serum. Thus,  we  believe  the  

positive association is likely due to chance.   

A reduction in serum T4 level can cause a feedback elevation of TSH level. We observed 

positive associations between maternal PFNA, PFUnDA and PFDoDA and maternal TSH, 

although non-significant. However, there was a positive association between maternal PFHxS 

and maternal TSH, and adverse, though non-significant, associations between maternal PFHxS 

and maternal free T4 or total T4. In the study of Korean women conducted by Kim et al., there 

was a positive correlation between maternal PFOA and cord TSH levels (Kim et al. 2011). In the 

two available rodent studies, no significant changes in serum TSH levels were detected among 

pregnant rats treated with PFOS (Lau et al. 2003) or among PFOS-exposed pups (Thibodeaux et 

al. 2003) despite decreases in total T4 in both studies. However, Luebker et al. reported higher 

serum TSH in association with lower T4 among rat pups from PFOS treated dams (Luebker et al. 

2003), and Seacat et al. also found an increase in serum TSH among both male and non-pregnant 

female monkeys with treatment of PFOS (Seacat et al. 2002). 

To our knowledge, there are no studies in experimental animals on the mechanism by which 

PFNA, PFUnDA and PFDoDA might modify thyroid hormones. However, investigations have 

been carried out for PFOS in rats. PFOS caused a reduction in both total T4 and free T4 levels in 

pregnant rats, in a protocol with daily dosing from gestational day 2 to day 20 (Thibodeaux et al. 

2003). In another study, a single dose of 15 mg of PFOS (producing a concentration in serum of 

approximately 50–75 µg/mL) lowered total T3 and total T4 (Chang et al. 2008). It was 

hypothesized that PFOS competed with free T4 for binding sites on the thyroid hormone 

transport protein transthyretin (TTR) in rats, which may have resulted in a lowering of serum 
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total  T3 and total  T4 (Chang et  al. 2008). Such competitive  displacement  may also occur in 

humans, a  suggestion supported by an in vitro  study in which PFASs  exhibited binding potency 

with human TTR (Weiss  et  al. 2009). However, different  PFASs  showed different  binding. 

PFNA, PFUnDA  and PFDoDA  showed less  binding strength than PFOS  and PFOA  (Weiss  et  al. 

2009). This  indicates  that  protein binding is  probably not  the  sole  factor contributing to the  

variation in associations  of PFASs with thyroid hormones.  

Besides affecting thyroid hormone transport, PFASs may also alter thyroid hormones 

biosynthesis and metabolism. In Yu et al.’s study, hepatic uridine diphosphoglucuronosyl 

transferase 1A1 (UGT1A1) activity, which is involved in hepatic metabolism of thyroid 

hormones, was induced in PFOS exposed rats and subsequently led to glucuronidation of T4 and 

circulating T4 deficiency (Yu et al. 2009). Apart from UGT1A1, they also found that PFOS 

increased thyroidal conversion of T4 to T3 via type 1 deiodinase, which was also a contribution 

to the reduction in T4(Yu et al. 2009). It should be noted that the PFAS concentrations in treated 

rats were much higher than seen in the general population of humans. 

The median serum concentrations of long-chain PFASs, PFNA, PFUnDA, and PFDoDA were 

slightly higher in our Taiwan study population than reported for study populations in western 

countries (Calafat et al. 2007; Gutzkow et al. 2012), but comparable to levels found in 

populations from Japan, Korea, and Vietnam (Harada et al. 2011). However, two other studies 

from Taiwan reported much higher concentrations than we observed (Lien et al. 2011; Lin et al. 

2012), suggesting that local or regional sources of exposure may be important in Taiwan. 

Additionally, concentrations of maternal PFNA, PFUnDA, and PFDoDA were strongly 

correlated, indicating that these substances may have common sources of exposure. Because 

these are longer chain PFASs, which are considered more bio-accumulative and toxic than 
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shorter PFASs  (Goecke-Flora  and Reo 1996;  Kudo et  al. 2001), investigation is  needed on their 

sources, routes of exposures, and any resulting toxicity.  

We had only one maternal serum sample and one cord serum sample (representing the infant), 

with which to assess both exposure and outcome. This leads to the question of whether these 

samples allow any reasonable inferences. In another population of Danish pregnant women, 

concentrations of PFOS and PFOA in samples drawn in the 1st and 2nd trimester are highly 

correlated (both 0.9) (Fei et al. 2007). Concentrations do decline over the course of pregnancy, 

but our samples were all drawn in a single (the 3rd) trimester. If the other PFASs behave like 

PFOS and PFOA, it seems reasonable to regard women with higher concentrations in the 

samples we have as being more highly exposed. For the maternal outcomes, total T3 and total T4 

are higher during pregnancy and increase over its course; free T4 is lower and decreases 

somewhat; the range of TSH is about the same for pregnant and non-pregnant women (Soldin et 

al. 2004). Variability in a given woman over the course of pregnancy is reported to be smaller 

than the variability between women (Boas et al. 2009), and thus the concentration in a given 

sample can be viewed as more representative of the individual from whom it was drawn rather 

than the trimester in which it was drawn. Thus, while samples drawn at multiple times might be 

better, using the sample at a given time during pregnancy does not appear likely to produce 

spurious associations; it would likely decrease power and attenuate measures of association. 

T3 and T4 increase over gestation, but free T4 is stable. Cord blood at term can have the highest 

T4 experienced by the fetus, since TSH normally falls after birth. There is generally not good 

correlation between T4, T3, or TSH in cord serum and maternal serum at term; this is thought to 

result from the increasing autonomy of the fetal thyroid axis as the pregnancy proceeds (Hume et 

al. 2004). Thus, any biological basis for the associations we see with thyroid hormones in cord 
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serum  and maternal  PFASs  should reflect  effects  on the  fetus, rather than on the  mother. 

Measurement  of  infant  thyroid hormones  shortly after birth might  have  been more  informative, 

as they are less affected by perturbations associated with delivery.   

The main strength of the present study was having data for both a panel of PFASs and thyroid 

hormones. Yet some limitations should be noted. First, although our study was relatively large, 

the size was not sufficient to evaluate clinical outcomes such as hypothyroidism or 

hypothyroxinemia. Second, three of the substances, PFNA, PFUnDA and PFDoDA, were highly 

correlated, thus we were unable to distinguish their independent associations. Third, many 

factors can affect thyroid hormone levels, such as iodine status, thyroid antibodies, etc., and we 

did not have measurements of all of them. Finally, some aspects of this study were cross-

sectional, making the direction of causation uncertain. 

In conclusion, thyroid hormones are of critical importance to both pregnant women and their 

offspring. Decreased maternal provision of T4 to the fetus leads to an increased risk of poor 

cognition, behavior and growth (Idris et al. 2005; Sahu et al. 2010). PFASs have been reported to 

be associated with low birth weight (Maisonet et al. 2012; Washino et al. 2009) and 

developmental problems in childhood (Hoffman et al. 2010), which might be due in part to 

disruption of thyroid hormone homeostasis. Our findings suggest maternal PFAS exposure may 

interfere with both maternal and fetal thyroid hormone homeostasis. The ubiquity of PFASs and 

the critical role of thyroid hormones in fetal growth and neurodevelopment make the findings of 

potentially great public health importance. 
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Table 1.  Characteristics of  the pregnant women (N = 285) and neonates (N = 116).        

Characteristics Mean ± SD or % 
Maternal age at enrollment (years), mean ± SD 28.8 ± 4.3 
Maternal weight (kg), mean ± SD 52.3 ± 7.7 
Maternal height (m), mean ± SD 159.2 ± 4.7 
Maternal pre-pregnancy BMI (kg/m2), mean ± SD 20.6 ± 2.9 
Maternal fish consumption (times/week), median (IQR) 3.8 (1.9, 6.8) 
Maternal previous live births, N (%) 

0 162 (57.0) 
≥ 1 123 (43.0) 

Maternal smoking during pregnancy, N (%) (1.4) 
Maternal drinking alcohol during pregnancy, N (%) (0.7) 
Maternal education, N (%) 

< High school 16 (5.6) 
High school 127 (44.4) 
Part or full college 100 (35.2) 
> College 42(14.8) 

Maternal annual family income (US $), N (%) 
< 13, 771 42 (15.1) 
≥ 13, 771 - <20, 672 84 (30.1) 
≥ 20, 672 - <34, 453 111 (39.4) 
≥ 34, 453 43 (15.4) 

Neonatal gender, N (%) 
Female 59 (50.9) 
Male 57(49.1) 

Neonatal type of delivery, N (%) 
Normal vaginal 40 (34.5) 
Vacuum 42 (36.2) 
Caesarean section 34 (29.3) 

Neonatal gestational weeks at birth, mean ± SD 38.8 ± 1.6 
Neonatal birth weight (kg), mean ± SD 3.2 ± 0.4 

Abbreviations: BMI, body mass index; IQR, inter-quartile range; SD, standard deviation. 
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Table 2. Serum concentrations of maternal PFASs (ng/mL). 

Maternal PFASs (N = 285) Molecular Formula % > LOQ 25thpercentile Median 75thpercentile 95th percentile 
Perfluorohexanesulfonic acid (PFHxS) C5F13CSO3H 78 0.30 0.81 1.35 2.90 
Perfluorooctanoic acid (PFOA) C7F15CO2H 87 1.54 2.39 3.40 5.20 
Perfluorooctane sulfonate (PFOS) C7F17CSO3H 100 9.65 12.73 17.48 27.85 
Perfluorononanoic acid (PFNA) C8F17CO2H 96 0.85 1.51 2.51 6.20 
Perfluorodecanoic acid (PFDeA) C9F19CO2H 71 0.10 0.46 0.69 1.09 
Perfluoroundecanoic acid (PFUnDA) C10F21CO2H 91 1.70 3.26 9.20 22.05 
Perfluorododecanoic acid (PFDoDA) C11F23CO2H 82 0.23 0.36 0.53 0.85 

Abbreviations: PFASs, perfluoroalkyl substances; LOQ, limit of quantification. 



  

    

     
     

     
     

     
     

     
     

     

 

 

Table 3. Serum concentrations of maternal and cord thyroid hormones. 

Sample Free T4 (ng/dL) Total T4 (µg/dL) Total T3 (µg/dL) TSH (µIU/mL) 
Pregnant women 

N 285 274 276 283 
Mean ± SD 0.60 ± 0.2 11.29 ± 2.3 0.16 ± 0.04 2.03 ± 1.3 
Median (IQR) 0.57 (0.49, 0.69) 11.16 (9.70, 12.80) 0.16 (0.13, 0.18) 1.76 (1.19, 2.45) 

Cord 
N 92 116 112 114 
Mean ± SD 0.74 ± 0.2 8.36 ± 2.0 0.06 ± 0.02 9.00 ± 6.9 
Median (IQR) 0.73 (0.60, 0.88) 8.37 (6.80, 9.80) 0.05 (0.046, 0.066) 6.65 (4.60, 11.00) 

Abbreviations: IQR, inter-quartile range; SD, standard deviation; T3, triiodothyronine; T4, thyroxin; 

TSH, thyroid stimulating hormone. 
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Table 4. Linear regression coefficients (95 % CI) for associations between maternal PFASs and maternal thyroid hormones. a 

Maternal PFAS b Free T4 (N = 285) Total T4 (N = 274) Total T3 (N = 276) TSH (N = 283) 
PFHxS -0.010 (-0.023, 0.003) -0.130 (-0.316, 0.057) -0.002 (-0.005, 0.001) 0.105 (0.002, 0.207)* 
PFOA -0.003 (-0.012, 0.005) 0.011 (-0.108, 0.130) -0.000 (-0.002, 0.009) 0.011 (-0.057, 0.078) 
PFOS 0.001 (-0.002, 0.003) 0.019 (-0.016, 0.053) 0.000 (-0.002, 0.001) -0.005 (-0.024, 0.013) 
PFNA -0.019 (-0.028, -0.009)*** -0.189 (-0.333, -0.046)** -0.001 (-0.003, 0.002) 0.033 (-0.046, 0.112) 
PFDeA -0.001 (-0.006, 0.005) 0.047 (-0.028, 0.123) 0.002 (0.000, 0.003)** 0.004 (-0.037, 0.045) 
PFUnDA -0.004 (-0.007, -0.002) *** -0.062 (-0.097, -0.026)*** -0.000 (-0.001, 0.000) 0.011 (-0.009, 0.030) 
PFDoDA -0.132 (-0.204, -0.059) *** -1.742 (-2.785, -0.700)** -0.005 (-0.022, 0.011) 0.365 (-0.215, 0.944) 

Abbreviations: CI, confidence interval; PFHxS, perfluorohexanesulfonic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane
 

sulfonate; PFNA, perfluorononanoic acid; PFDeA, perfluorodecanoic acid; PFUnDA, perfluoroundecanoic acid; PFDoDA, 


perfluorododecanoic acid; T3, triiodothyronine; T4, thyroxin; TSH, thyroid stimulating hormone. Units of PFASs are in ng/mL. The
 

unit of TSH is µIU/mL, units of free T4 and total T3 are ng/dL and the unit of total T4 is µg/dL.
 
aModels were adjusted for maternal age, maternal education levels and maternal previous live births. bValues below LOQ were
 

imputed based on expected values assuming a log-normal distribution.
 

* p < 0.05; ** p < 0.01; *** p < 0.001. 



  

   

      
     

      
     
     
     

     
     

 

 

   

 

  

 

Table 5. Linear regression coefficients (95 % CI) for associations between maternal PFASs and cord thyroid hormones. a 

Maternal PFAS b Free T4 (N = 92 ) Total T4 (N = 116) Total T3 (N = 112) TSH (N = 114 ) 
PFHxS -0.030 (-0.098, 0.039) 0.002 (-0.495, 0.500) -0.001 (-0.007, 0.004) 0.493 (-1.449, 2.434) 
PFOA -0.029 (-0.062, 0.004) 0.128 (-0.094, 0.350) -0.001 (-0.004, 0.001) -0.498 (-1.464, 0.468) 
PFOS 0.001 (-0.006, 0.008) 0.032 (-0.024, 0.087) 0.000 (-0.000, 0.001) -0.083 (-0.292, 0.127) 
PFNA 0.001 (-0.021, 0.023) -0.213 (-0.384, -0.042) * -0.002 (-0.004, -0.001)** -0.361 (-0.955, 0.234) 
PFDeA 0.020 (-0.124, 0.164) -0.513 (-1.732, 0.706) -0.017 (-0.028, -0.005)** -3.505 (-7.821, 0.812) 
PFUnDA 0.002 (-0.004, 0.007) -0.052 (-0.095, -0.010) * -0.001 (-0.001, -0.0002)** -0.083 (-0.232, 0.066) 
PFDoDA -0.009 (-0.183, 0.165) -1.920 (-3.345, -0.495) ** -0.022 (-0.035, -0.009)** -1.539 (-6.582, 3.503) 

Abbrevations: CI, confidence interval; PFHxS, perfluorohexanesulfonic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane
 

sulfonate; PFNA, perfluorononanoic acid; PFDeA, perfluorodecanoic acid; PFUnDA, perfluoroundecanoic acid; PFDoDA, 


perfluorododecanoic acid; T3, triiodothyronine; T4, thyroxin; TSH, thyroid stimulating hormone. Units of PFASs are in ng/mL. Unit
 

of TSH is µIU/mL. Units of free T4 and total T3 are ng/dL and unit of total T4 is µg/dL.
 
aAdjusted for maternal age, maternal education levels, maternal previous children, neonatal gender and neonatal type of delivery. 

bValues below LOQ were imputed based on expected values assuming a log-normal distribution.
 

* p<0.05; ** p<0.01. 
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